- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Ku, Peijia (3)
-
Tsui, Martin Tsz-Ki (2)
-
Atkins, Jeff W (1)
-
Baalousha, Mohammed (1)
-
Blum, Joel D. (1)
-
Bourbonnais, Annie (1)
-
Brooks, Scott C (1)
-
Campbell, Barbara J (1)
-
Chen, Huan (1)
-
Cheng, Zhang (1)
-
Chow, Alex T. (1)
-
Chow, Alex Tat-Shing (1)
-
Dahlgren, Randy A. (1)
-
Du, Penghui (1)
-
Gleasman, Gavin (1)
-
Hagan, Donald (1)
-
Hoang, Tham C. (1)
-
Lam, Hon-Ming (1)
-
Li, Han-Han (1)
-
Mo, Xiaohan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Forested watersheds are instrumental in providing purified and reliable water to millions of people worldwide. The changing climate has increased the frequency and severity of global fire events. Forested watersheds and their ecosystem functions are greatly disrupted during fire activity. Postfire concerns in forested watersheds include unpredictable and potentially simultaneous alterations in source water quality and hydro-biogeochemical processes. The degree of fire severity can complexly modify water quality through the production of fire-transformed constituents on the burned forest floor (i.e., nutrients, metal(loid)s, dissolved organic matter, and the formation of disinfection byproducts). Correspondingly, fire severity and postfire rainfall patterns can refine hydro-biogeochemical processes that influence the transport of the fire-transformed constituents (i.e., vegetation function, soil structure, hydrological pathways, and microbial communities). Postfire alterations to water quality and hydro-biogeochemical processes introduce further complexity with varying temporal influence, which ranges from months to decades. As postfire water quality and watershed response research progresses, it is essential to homogenize interdisciplinary expertise to bridge knowledge gaps between fields ranging from forest ecology, hydrology, microbiology, and geochemistry. A multidisciplinary approach in wildfire research will facilitate a comprehensive perception of the diverse water quality risks associated with fire activity and mitigate fire concerns on a global level.more » « lessFree, publicly-accessible full text available July 29, 2026
-
Stinson, Idus; Li, Han-Han; Tsui, Martin Tsz-Ki; Ku, Peijia; Ulus, Yener; Cheng, Zhang; Lam, Hon-Ming (, Scientific Reports)Abstract Tree canopies are known to elevate atmospheric inputs of both mercury (Hg) and methylmercury (MeHg). While foliar uptake of gaseous Hg is well documented, little is known regarding the temporal dynamics and origins of MeHg in tree foliage, which represents typically less than 1% of total Hg in foliage. In this work, we examined the foliar total Hg and MeHg content by following the growth of five individual trees of American Beech (Fagus grandifolia) for one growing season (April–November, 2017) in North Carolina, USA. We show that similar to other studies foliar Hg content increased almost linearly over time, with daily accumulation rates ranging from 0.123 to 0.161 ng/g/day. However, not all trees showed linear increases of foliar MeHg content along the growing season; we found that 2 out of 5 trees showed elevated foliar MeHg content at the initial phase of the growing season but their MeHg content declined through early summer. However, foliar MeHg content among all 5 trees showed eventual increases through the end of the growing season, proving that foliage is a net accumulator of MeHg while foliar gain of biomass did not “dilute” MeHg content.more » « less
-
Ku, Peijia; Tsui, Martin Tsz-Ki; Nie, Xiangping; Chen, Huan; Hoang, Tham C.; Blum, Joel D.; Dahlgren, Randy A.; Chow, Alex T. (, Environmental Science & Technology)
An official website of the United States government
